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Abstract—In this paper, we investigate achievable secrecy sum-
rate in uplink multiuser networks where some base stations
are compromised to operate as potential eavesdroppers. Due
to the difficulty of analyzing the exact secrecy capacity region
in multiuser networks, we focus on analyzing the secrecy sum-
rate scaling in terms of the number of transmitters based on
multiuser diversity (MUD). We propose an opportunistic user
scheduling scheme able to achieve optimal MUD gain in uplink
multiuser networks where N transmitters (users), a single desired
receiver (i.e., base station), and K potential eavesdroppers (i.e.,
compromised base stations) are assumed. The proposed scheme
enables multiuser transmissions in one scheduling time slot by
employing orthogonal random beamforming at the receiver. In
addition, the proposed scheme can fully exploit the degrees-of-
freedom (DoF) gain when each transmitter is equipped with
a single antenna, and base station and potential eavesdroppers
are equipped with M antennas. The main results show that the
proposed scheduling scheme achieves the optimal secrecy sum-
rate scaling indicating that the achievable secrecy sum-rate scales
as M log (SNR logN) in a high signal-to-noise ratio (SNR) regime
when a certain user scaling condition.

Index Terms—Physical-layer security, multiuser diversity, op-
portunistic scheduling, random beamforming, multiple access
channel.

I. INTRODUCTION

In the 6G era, information security has become more
important than ever [1]. However, unfortunately, the wireless
communication systems can be easily exposed to eavesdrop-
ping attacks due to the broadcasting nature of radio signals.
Traditionally, for information protection, an encryption/de-
cryption such as AES (Advanced Encryption Standard) has
been generally used in upper layers (e.g., transport layer)
in wireless communication systems. In recent, a notion of
achieving information theoretic secrecy in wireless networks,
so-called a physical-layer security, has attracted much atten-
tion. The physical-layer security exploits the randomness of
the wireless channel, instead of using computational hardness
commonly used in conventional cryptographic approaches, to
guarantee confidentiality [2].

The fundamental notions of physical-layer security have
been established by Shannon [3]. Since then, there have been
lots of efforts to investigate information-theoretic secrecy at
the physical-layer in wireless communication systems [4].

� Corresponding Author: Bang Chul Jung

Especially, we seek to investigate the achievable secrecy
sum-rate in uplink multiuser networks where multiple users
transmit data to the desired receiver (e.g., a base station) at
the same time under eavesdropping attacks.

There have been several studies which investigate various
aspects of the secrecy rate in multiuser wiretap networks, such
as secure degrees-of-freedom [5], secrecy diversity [6], [7],
and secrecy rate scaling [8]–[10]. Xie and Ulukus studied se-
cure degrees-of-freedom (DoF) regions of the multiple access
channel and the multiuser interference channel under several
secrecy constraints [5]. Like the notion of DoF is readily
modified to the secure DoF, secrecy diversity order, similar
to the definition of traditional diversity order, is a notion to
indicate diversity gain when we consider the secrecy outage
probability. Chae et al. investigated secrecy outage proba-
bility in multiple-input and multiple-ouput (MIMO) wiretap
channels [6]. Zou et al. investigated the effects of various
user scheduling schemes on secrecy diversity order in terms
of secrecy outage probability, considering multiple users in
cognitive radio networks [7]. In other words, multiuser di-
versity (MUD), i.e., the number of users, can contribute to
enhancing secrecy in wireless networks. The authors of [8]–
[10] investigated ways to opportunistically exploit multiple
users during the scheduling process in order to achieve optimal
MUD gain in terms of secrecy rate scaling. Particularly, previ-
ous studies only investigated single-user transmission during
one scheduling time slot even for multiple antenna settings.
It has not been explored yet to analyze the secrecy sum-rate
scaling of a user scheduling scheme that supports multiuser
transmissions at the same time in multiple antenna settings.

In this paper, we propose an opportunistic user schedul-
ing scheme, which achieves optimal MUD gain in uplilnk
multiuser networks, which consists of N transmitters (users),
a single desired receiver (base station), and K potential
eavesdroppers (i.e., compromised base stations). Our proposed
scheme enables multiuser transmissions in one scheduling time
slot by employing orthogonal random beamforming at the
receiver. The proposed scheme can fully exploit the degrees-
of-freedom gain when each transmitter is equipped with a
single antenna, and base station and potential eavesdroppers
are equipped with M antennas. The main contributions of our
work are summarized as follows;
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• To the best of our knowledge, it is the first study to
investigate secrecy sum-rate scaling in uplink multiuser
networks where independent multiple potential eaves-
droppers exist;

• We have proved that the achievable secrecy sum-rate of
the proposed scheme scales as M log (SNR logN) when
a user scaling condition is satisfied;

• Numerical results show that the proposed scheme out-
performs conventional scheduling schemes in terms of
secrecy sum-rate.

Notations: Throughout the paper, we use the following
notations. � stands for “is defined as”. |·| represents a
cardinality when it applies to the set or an absolute value
when it applies to the scalar value. In represents an n by
n identity matrix. [x]+ denotes max (x, 0). (·)T is transpose
operator. Similarly, (·)H denotes conjugate transpose. det (·)
and ‖·‖ denote determinant of a matrix and Euclidean norm,
respectively.

II. SYSTEM MODEL

We consider a time-division duplexing (TDD) uplink mul-
tiuser network which consists of N transmitters (users), a
single desired receiver (base station), and K potential eaves-
droppers (i.e., uplink wiretap channel). We assume that some
base stations located close to the desired base station can be
compromised by the adversary for the purpose of eavesdrop-
ping and thus we regard them as potential eavesdroppers.1 We
assume that each transmitter is equipped with a single antenna,
and base station (BS) and each eavesdropper (Eve) have the
same M antennas. We consider a block-fading channel model,
where the channel is constant within a single block and
independently varying in the next block. During one symbol
time, S users are scheduled for data transmission. Thus, it
can be modeled by a single-input and multiple-output (SIMO)
multiple access channel (MAC). Fig. 1 describes an example
of the system model.

The term αnhn ∈ CM×1 denotes the channel vector from
the n-th transmitter to the base station, where αn and hn

for n ∈ {1, · · · , N} represent the large-scale and small-
scale fading components, respectively. Similarly, the term
βnkgnk ∈ CM×1 denotes the channel vector from the n-
th transmitter to the k-th eavesdropper, where βnk and gnk

for k ∈ {1, · · · ,K} represent the large-scale and small-
scale fading components, respectively. Each element of hn

and gnk is assumed to be an independent and identically
distributed (i.i.d.) complex Gaussian random variable with zero
mean and unit variance. Further, hn and gnk are available
during the scheduling process since we assume the potential
eavesdropping scenario as in [11]. The term NS denotes a
selected transmitter index set with |NS | = S.

A. Random Beamforming at Receiver

To support simultaneous data transmission from multiple
transmitters, we employ random beamforming at the desired

1Throughout the paper, we use both terms ‘potential eavesdropper’ and
‘eavesdropper’ interchangeably for concise expressions.
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Fig. 1: An uplink multiuser network consisting of N users (S
scheduled transmitters for data), a single base station and K potential
eavesdroppers: the SIMO MAC model

receiver, which can decode maximum M signals at the same
time [12]. For each time slot, the base station constructs
beamforming vectors represented for selected S transmitters
by an M × S matrix (S ≤ M ),

U =
[
u[1], · · · ,u[S]

]
, (1)

where u[l] ∈ CM×1 is the l-th orthonormal random vec-
tor and generated according to the isotropic distribution for
l ∈ {1, · · · , S}. The information of generated beamforming
vectors is broadcasted to all transmitters for scheduling pro-
cess. The detailed scheduling procedure will be explained in
the Section III.

B. Achievable Secrecy Sum-Rate

It is difficult to obtain an individual secrecy capacity region
in wireless multiuser networks. Instead, we consider secrecy
sum-rate as in [13] and use a lower bound of the achievable
secrecy sum-rate. For analytical tractability, we assume that
αn = 1 and βnk = 1 for all n and k. Then, the received signals
at the base station, y ∈ CM×1, and at the k-th eavesdropper,
yk ∈ CM×1, are expressed, respectively, as

y =
∑

s∈NS

hsxs + z, and yk =
∑

s∈NS

gskxs + zk, (2)

where xs denotes the desired data symbol for the s-th transmit-
ter among selected S users (i.e., s ∈ NS), each of which meets
the average power constraint P0, and z and zk denote the i.i.d.
and circularly symmetric complex additive white Gaussian
noise vectors with zero mean and covariance of σ2IM .

Note that the achievable secrecy sum-rate is obtained based
on the sum of secrecy rates between main channel (between
transmitters and base station) and wiretap channel (between
transmitters and eavesdroppers). Thus, the achievable secrecy
sum-rate can be different depending on the post-processing at
base station and eavesdroppers.

For the main channel, the desired base station decodes
received signal in (2) by using receive random beamforming
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based on (1) and, the achievable rate of each transmitter and
base station pair in the main channel is given by

r
[s]
BS = log

(
1 +

|u[s]T
0 hπs

|2ρ
1 +

∑S
l=1,l �=s|u

[l]T
0 hπl

|2ρ

)
, (3)

where u
[s]
0 represents s-th receive random beamforming vector

defined in (1), πs denotes scheduled transmitter index for the
beam u

[s]
0 , and ρ is the transmit SNR defined as ρ � P0

σ2 .2

Eavesdroppers are assumed to be internal nodes such as
compromised base stations. Thus, we assume that eavesdrop-
pers operate the same as the base station and use the receive
random beamforming technique. Similar to the desired base
station, each eavesdropper independently decodes its received
signal in (2) by using receive random beamforming based
on (1).

From the perspective of s-th receive random beamforming,
information leakage by all eavesdroppers (i.e., the achievable
rate by eavesdroppers) is given by

r
[s]
Eve = max

k∈K

{
log

(
1 +

|u[s]T
k gπsk|2ρ

1 +
∑S

l=1,l �=s|u
[l]T
k gπlk|2ρ

)}
, (4)

where K denotes eavesdropper index set, i.e., K �
{1, · · · ,K}, u[s]

k represents s-th receive random beamforming
vector defined in (1), and subscript k in u

[s]
k indicates receive

random beamforming vectors at k-th eavesdropper. (4) is
represented as maximum of each eavesdropper’s achievable
sum-rate among K eavesdroppers since we assume each
eavesdropper operates independently.

Therefore, the achievable secrecy sum-rate is given by

Rsec =
S∑
s

[
r
[s]
BS − r

[s]
Eve

]+
, (5)

where r
[s]
BS and r

[s]
Eve are defined in (3) and (4), respectively.

III. OPPORTUNISTIC USER SCHEDULING SCHEME FOR
OPTIMAL MULTIUSER DIVERSITY GAIN

In this section, we define the scheduling parameters, intro-
duce our proposed user scheduling scheme, and analyze its
secrecy sum-rate scaling.

A. Scheduling Parameters

For n-th transmitter and its expected scheduling beam index
l∗ ∈ {1, · · · , S}, we define the following scheduling metrics.

η
[n,l∗]
Q � |u[l∗]T

0 hn|2, (6a)

η
[n,l∗]
I �

S∑
l=1,l �=l∗

|u[l]T
0 hn|2, (6b)

η
[n]
L � max

k∈K
‖gnk‖2, (6c)

where we define a normalized signal quality in main channel,
a normalized generating interference of n-th transmitter at the

2Here, subscript zero in u
[s]
0 indicates receive random beamforming vectors

at the desired BS.

desired base station, and a maximum of normalized informa-
tion leakage in wiretap channel as η

[n,l∗]
Q , η

[n,l∗]
I , and η

[n]
L ,

respectively.
Additionally, we devise pre-determined positive threshold

values, η�I and η�L, which represent for the maximum of
allowable generating interference and information leakage,
respectively. The optimal values of η�I and η�L can be obtained
through simulation for given system parameters such as N ,
K, M , and S.

B. Opportunistic User Scheduling Scheme

The proposed user scheduling scheme opportunistically
selects S transmitters based on signal quality on the main
channel and wiretap channel indicated by scheduling parame-
ters defined in (6). The entire procedure of the proposed user
scheduling scheme consists of the following four steps during
one scheduling time slot.

1) Step 1. Broadcast receive random vectors & pre-
determined threshold values: The base station first constructs
S orthogonal random vectors (i.e., U0 =

[
u
[1]
0 , · · · ,u[S]

0

]
) and

broadcast the information of U0, η�I and η�L to all transmitters.
2) Step 2. Scheduling metric feedback information:

For given an expected scheduling beam index l∗ (∀l∗ ∈
{1, · · · , S}), each transmitter estimates its scheduling param-
eters in (6) and compares them with η�I and η�L. If estimated
generating interference or information leakage exceeds the
maximum allowable level of the system (i.e., η

[n,l∗]
I ≥ η�I

or η
[n]
L ≥ η�L), the transmitter does not transmit feedback

information for the corresponding beam index. Further, the
transmitter might not transmit any feedback information if
none of the beams satisfies the system constraints. In other
words, the transmitter opportunistically transmits feedback
information for a certain beam when it satisfies (6).

3) Step 3. User selection: After receiving N transmitters’
feedback information, the base station selects the best S
transmitters corresponding to S receive vectors and broadcast
scheduling transmitter index set to all transmitters.

4) Step 4. Uplink communication & receive processing: S
selected transmitters simultaneously transmit their data to the
base station. The base station receives the signals and decodes
the desired data using the receive beamforming vectors.

C. Analysis of Secrecy Sum-Rate Scaling

Now, we analyze the secrecy performance of proposed
scheduling algorithm in terms of secrecy sum-rate scaling.
We show that the proposed scheme asymptotically achieves
the optimal secrecy sum-rate scaling, where the secrecy sum-
rate scales as M log (ρ logN) when the number of users (N )
increases with SNR (ρ). In other words, we analyze how N
scales with ρ to achieve the optimal secrecy rate scaling.

We investigate a lower bound of the achievable secrecy sum-
rate and prove the optimal secrecy sum-rate scaling using the
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lower bound. The lower bound of Rsec is given by

Rsec =

S∑
s

[
r
[s]
BS − r

[s]
Eve

]+

≥

[
S∑
s

r
[s]
BS −

S∑
s

r
[s]
Eve

]+

= [Rsum
BS −Rsum

Eve ]
+

≥

[
Rsum

BS −max
k∈K

{
log det

(
IM + ρ

∑
s∈NS

gskg
H
sk

)}]+

= [Rsum
BS − Csum

Eve ]
+ ≥ Rsum

BS − Csum
Eve , (7)

where maxk∈K
{
log det

(
IM + ρ

∑
s∈NS

gskg
H
sk

)}
is denoted

by Csum
Eve and Rsum

BS and Rsum
Eve denote

∑S
s r

[s]
BS and

∑S
s r

[s]
Eve,

respectively. In (7), the first and the third inequalities hold due
to characteristics of [·]+ function and the second inequality
holds since Csum

Eve indicates capacity of the wiretap channel.
Thus, we consider Rsum

BS − Csum
Eve instead of Rsec during the

main proof.
We consider a slightly modified version of the proposed

scheduling algorithm to prove the achievability of the optimal
secrecy sum-rate scaling. The modified scheduling scheme ad-
ditionally considers a threshold value for the minimum signal
quality for the main channel (i.e., η�Q) for given transmitter
index n and beam index l∗. Thus, the modified scheduling
scheme only utilizes the information of transmitter index n
and beam index l∗ satisfying the following scheduling criteria:

(C1) η
[n,l∗]
Q ≥ η�Q,

(C2) η
[n,l∗]
I ≤ η�I ,

(C3) η
[n]
L ≤ η�L,

(8)

where η
[n,l∗]
Q , η[n,l

∗]
I , and η

[n]
L are defined in (6).

Definitely, the modified scheduling scheme shows the de-
graded performance compared with the original proposed
scheduling scheme since modified version additionally con-
sider (C1) constraint. Therefore, the proof for the achievability
of the modified scheduling scheme is enough to show the
achievability of the proposed scheme.

To prove the achievability, we first show that there exists
at least one transmitter satisfying all criteria in (8) with
high probability and next verify the optimal secrecy sum-rate
scaling. We introduce the following two lemmas in order to
prove our main theorem.

Lemma 1. Let f(x) denote a continuous function of x ∈
[0,∞), where 0 < f(x) ≤ 1. Then, lim

x→∞
(1− f(x))

x
= 0 if

and only if lim
x→∞

xf(x) → ∞.

Proof: If lim
x→∞

xf(x) → ∞, then it follows that f (x) =

ω( 1x ), thus resulting in

lim
x→∞

(1− f(x))
x
= o

(
lim
x→∞

(
1− 1

x

)x)
= o (1)

for 0 < f (x) ≤ 1. It is hence seen that lim
x→∞

(1− f(x))
x

converges to zero. If lim
x→∞

xf(x) is finite, then there exists a

constant c3 > 0 such that xf(x) < c3 for any x ≥ 0. We then
have

lim
x→∞

(1− f(x))
x
= lim

x→∞

(
1− c3

x

)x

= e−c3 > 0,

which completes the proof.

Lemma 2. For any 0 ≤ x < 1 and z > 0, the lower
incomplete Gamma function γ (z, x) is lower-bounded by

γ (z, x) ≥ 1

z
xze−1. (9)

Proof: The inequality in (9) holds since

γ (z, x) =
1

z
xze−x + γ (z + 1, x)

=
1

z
xze−x +

1

z (z)
xz+1e−x + · · ·

≥ 1

z
xze−1,

which completes the proof.
Let p[l

∗] denote a probability that at least one transmitter
satisfying all criteria in (8) for l∗-th beam. To analyze p[l

∗], we
characterize the probability such that each criterion is satisfied
for a certain transmitter, i.e., Pr (C1), Pr (C2), and Pr (C3).
Hereafter, we omit the transmitter index n and the beam
index l∗ for representing each probability due to the fact that
we assume the i.i.d. channel vectors. In other word, Pr (C1),
Pr (C2), or Pr (C3) is same regardless of a certain transmitter
index n ∈ {1, · · · , N} and beam index l∗ ∈ {1, · · · ,M}.

First, Pr (C1) is given by

Pr (C1) � Pr
{
|u[l∗]T

0 hn|2 ≥ η�Q

}
= e−η�

Q , (10)

since the receive beam u
[l∗]T
0 is assumed to be isotropi-

cally distributed and thus |u[l∗]T
0 hn|2 is exponentially dis-

tributed [12].
Second, Pr (C2) is given by

Pr (C2) � Pr




S∑
l=1,l �=l∗

|u[l]T
0 hn|2 ≤ η�I


 =

γ (S − 1, η�I /2)

Γ (S − 1)
,

(11)

where Γ (z) =
∫∞
0

tz−1e−tdt is the Gamma function and
γ (z, x) =

∫ x

0
tz−1e−tdt is the lower incomplete Gamma

function.
In (11), the last equality holds due to the fact that |u[l]T

0 hn|2
is exponentially distributed and the sum of S − 1 inde-
pendent exponential random variables is distributed accord-
ing to the chi-square distribution with 2 (S − 1) degrees-of-
freedom [14].

Third, Pr (C3) is given by

Pr (C3) � Pr
{
max
k∈K

‖gnk‖2 ≤ η�L

}
=

(
γ (M,η�L/2)

Γ (M)

)K

,
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since the term ‖gnk‖2 is the sum of M independent ex-
ponential random variables and thus it is distributed ac-
cording to the chi-square distribution with 2M degrees-of-
freedom, i.e., γ(M,η�

L /2)
Γ(M) . Therefore, according to [14], the term

maxk∈K‖gnk‖2 is distributed as
(

γ(M,η�
L /2)

Γ(M)

)K

.
Finally, we introduce our main theorem to show the achiev-

able secrecy sum-rate scaling of the proposed scheduling
scheme.

Theorem 1. For an ε ∈ (0, 1), η�Q = ε logN , and η�I =
η�L = ρ−1, the proposed scheduling scheme achieves secrecy
sum-rate scaling as Θ(M log (ρ logN)) with high probability
when

N = Θ
(
ρ

M(K−1)+1
1−ε0

)
, (12)

where ε0 ∈ (ε, 1) is a constant.3

Proof: We consider the modified scheduling scheme
instead of the proposed scheduling scheme for the proof.
First, we focus on the probability that at least one transmitter
satisfying all criteria in (8) for l∗-th beam, i.e., p[l

∗]. Using
the probability Pr (C1), Pr (C2), and Pr (C3), p[l

∗] is lower-
bounded by

p[l
∗] ≥ 1− (1− Pr (C1) Pr (C2) Pr (C3))N

= 1−
(
1− e−η�

QFC2 (η
�
I )FC3 (η

�
L)
)N

,

where we define FC2 (η
�
I ) � Pr (C2) and FC3 (η

�
L) � Pr (C3).

From Lemma 1 with 0 < e−η�
QFC2 (η

�
I )FC3 (η

�
L) ≤ 1, it

follows that p[l
∗] converges to one as N tends to infinity if

lim
N→∞

Ne−η�
QFC2 (η

�
I )FC3 (η

�
L) → ∞. (13)

Using Lemma 2, FC2 (η
�
I ) and FC3 (η

�
L) are lower bounded as

follows, respectively:

FC2 (η
�
I ) ≥ c1 (η

�
I )

S−1
,

FC3 (η
�
L) ≥ c2 (η

�
L)

MK
,

(14)

where c1 = e−12−(S−1)

(S−1)Γ(S−1) and c2 =
(

e−12−M

MΓ(M)

)K

. Thus, by
using (14), the term in (13) can be lower-bounded by

lim
N→∞

c1c2N (η�I )
S−1

(η�L)
MK

e−η�
Q .

Substituting S = M , η�Q = ε logN , and η�I = η�L = ρ−1, it is
further reduced to

lim
N→∞

c1c2
N

ρM(K+1)−1
e−ε logN = lim

N→∞

N1−ε

ρM(K+1)−1
,

which tends to infinity when N scales as ρ
M(K−1)+1

1−ε0 . There-
fore, the probability p[l

∗] converges to one when N =

Θ
(
ρ

M(K−1)+1
1−ε0

)
.

3We use the following notations: i) f (x) = O (g (x)) means that there
exist constants C and c such that f (x) ≤ Cg (x) for all x > c. ii) f (x) =
Θ (g (x)) if f (x) = O (g (x)) and g (x) = O (f (x)).

It remains to show the achievable secrecy sum-rate scales
Θ(M log (ρ logN)). From (7), a lower bound of the sum-rate
of the main channel is given by

Rsum
BS =

M∑
l∗=1

log

(
1 +

|u[l∗]T
0 hπl∗ |2ρ

1 +
∑M

l=1,l �=l∗ |u
[l]T
0 hπl

|2ρ

)

≥
M∑

l∗=1

p[l
∗] log

(
1 +

η�Qρ

1 + (M − 1) η�I ρ

)

= M log
(
1 +

ε

M
ρ logN

)
.

Similarly, an upper bound of the sum-rate of wiretap channel
is given by

Rsum
Eve = max

k∈K

{
S∑

s=1

log

(
1 +

|u[s]T
k gπsk|2ρ

1 +
∑S

l=1,l �=s|u
[l]T
k gπlk|2ρ

)}

≤ max
k∈K

{
log det

(
IM + ρ

∑
s∈NS

gskg
H
sk

)}

≤ M log (1 + η�Lρ) = M log (2) .

where the first inequality holds from the fact that Rsum
Eve is

always smaller than or equal to the channel capacity of the
wiretap channel.

Therefore, secrecy sum-rate is lower-bounded by

Rsec ≥ Rsum
BS − Csum

Eve

≥ M log
(
1 +

ε

M
ρ logN

)
−M log (2)

= M log

(
1

2
+

ε

2M
ρ logN

)
,

which achieves full degree-of-freedom gain M and optimal
MUD gain log logN as N tends to infinity. This completes
the proof of the theorem.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of our proposed
schemes in term of the achievable secrecy sum-rate through
simulations. We consider three conventional user schedul-
ing schemes as references: MaxSNR, MinGI, and OS-MRC.
MaxSNR indicates a user scheduling scheme that selects the
users having the maximum desired signal strength to each
beam. Contrary to MaxSNR, MinGI is a user scheduling
scheme that selects the users generating minimum amount of
interference to other beams. OS-MRC represents a threshold-
based opportunistic scheduling scheme with maximum ratio
combining instead of random beamforming at receiver and
eavesdroppers [9].

Fig. 2 shows the average achievable secrecy sum-rate for
varying the number of users. In details, MaxSNR and MinGI
shows the degraded secrecy performance compared to the
proposed scheme since they do not fully utilize channel
information for user scheduling. Even though OS-MRC adopts
threshold-based opportunistic scheduling, there is a significant
performance gap between the proposed scheme and OSMRC
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Fig. 2: Average achievable secrecy sum-rate for varying the number
of users when M = 2, K = 2, and ρ = 10 dB.
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Fig. 3: Average achievable secrecy rate for varying SNR when M =
2, N = 100, and K = 2.

since OS-MRC does not fully utilize spatial diversity (i.e.,
S = 1) whereas the proposed scheme does.

Fig. 3 shows the average achievable secrecy sum-rate for
varying SNR, where system parameters are set as M = 2,
N = 100, and K = 2. Similar to the result of Fig.
2, the proposed scheme outperforms conventional schemes.
Interestingly, MinGI shows good secrecy performance in high
SNR regime whereas secrecy sum-rate of MaxSNR is saturated
as SNR increases. It indicates that inter-beam interference
at the desired receiver is the dominant factor to determine
secrecy sum-rate since eavesdroppers use the same random
beamforming techniques at receiving process.

Remark 1. Note that we considered terrestrial communication
environment. However, our proposed scheme can be applied to
satellite communication networks. Specifically, our proposed
scheduling scheme can enhance the secrecy performance of
satellite communications by minimizing information leakage
to unauthorized nodes. As we discussed, our proposed scheme
is particularly effective as the number of nodes increases.

V. CONCLUSIONS

In this paper, we proposed the threshold-based opportunistic
user scheduling, which achieves secrecy sum-rate scaling as
M log (ρ logN) when the number of transmitters goes to
infinity in high SNR regime. Further, the secrecy performance
of the proposed scheme was evaluated through simulations
and the results show the superiority of our proposed user
scheduling scheme compared with conventional schemes, in
terms of secrecy sum-rate, especially, when the number of
transmitters is sufficiently large. The analysis for secrecy sum-
rate scaling in various environment (e.g., satellite communi-
cation networks) would be one of the future issues of this
work.
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